本文来自微信民众号:把科学带回家(ID:steamforkids),作者:七君,题图来自:视觉中国
咱们在中学时就知道,氢原子是元素周期内外最轻的元素,它也是宇宙中最早降生、最多的元素,数目占比到达91.2%。氢的性子活跃,燃烧后形成水,因此氢能源也是备受期待的清洁能源。
不外,氢并没有我们想象的那么“清洁”,它曾经让美军造价为3600万美金油轮以一个月140艘的速率淹没,让加州海湾大桥差点报废,而且阻止氢能源汽车成为主流。
为了驯服这个顽皮的元素,甚至还泛起了一个专门学科分支。今天,我们就来领会一下这个奇异元素的你不知道的另一面。
仅存的四艘自由轮之一的 SS John W. Brown 号 图片泉源:wikipedia
二战时,为了运输士兵和物资,美军制作了数千艘油轮——自由轮(Liberty Ships)。不外,自由轮很快成了灾难片现场。
在2710艘自由轮中,近1500艘泛起了严重的裂痕。在严寒而又波涛汹涌的海面上,一些自由轮甚至断成了两节。其中最着名的就是就是 S.S. Schenectady 号油轮。
裂成两半的自由轮 S.S. Schenectady 号 图片泉源:wikipedia
1943年1月16日的晚上,俄勒冈州Swan Island造船厂发出巨响,尚未交付的 S.S. Schenectady 裂成了两半。
由于这是该造船厂造的第一艘船,以是引起了恐慌。实际上在那年3月,另一艘自由轮 the Esso Manhattan 号在进入纽约湾的时刻也裂开了。
自由轮以一个月140艘的速率淹没。自由轮在那时的造价是每艘约200万美金,相当于现在的3600万美金。这种沉船速率里为美军带来了伟大的损失。问题事实出在哪儿了呢?
裂开的自由轮 图片泉源:tf.uni-kiel.de
战争时期没有人知道谜底,不外人人照样找到领会决方式,那就是打补丁。美国造船厂在裂痕处用钢板打补丁,防止汽船进一步开裂。这个方式还挺有用,因此厥后这些防开裂钢板就叫做止裂铆缝(crack arrestor)。
在这个措施全面实施后,一个月里就只有20艘自由轮淹没,数目速降到了之前的七分之一。
二战后,美国海军研究实验室的物理学家乔治·兰金·欧文(George Irwin)行使自由轮的数据举行了研究,终于找到了让汽船开裂淹没的凶手——氢。
原来在20世纪初,一些新的焊接手艺被发明晰出来,好比手工电弧焊(SMAW)和焊条焊接。电焊时,电弧或乙炔燃烧的热量会熔化金属,让两块金属焊接在一起。
在电焊手艺泛起前,拼接汽船的金属板用的是铆接手艺。铆接手艺有不少瑕玷,好比需要受过专门训练的技工,这让铆接工的成本占到汽船组装人力成本的三分之一之巨。此外,铆接时需要把几块金属板交叠,这不但会增添船体的重量,还会增添成本。
船体铆接 图片泉源:boat-building.org
由于缺乏熟练的铆接工,美国联邦海事委员要求美国的造船厂用焊接替换铆接。这样一来,汽船的交货速率迅速提高了。在1930~1937年间,美国的造船厂才制造了71艘船。然则用上电焊手艺后,在1939~1945年间美国造船厂造了5777艘船。
制造一艘自由轮只需要5天。在1941~1945年间,美国的18个造船厂就用焊接手艺为美军制造了2710艘自由轮。
然则,那时的人们不知道的是,焊接时会发生单原子氢(H),而单原子氢会钻入金属中形成氢气(H2)。
氢气在金属晶粒四周群集起来,损坏金属的结构,让金属胀气变脆。有时氢气在金属内能累积成18.7兆帕,也就是地表气压187倍的高压。这个征象被命名为氢脆(hydrogen embrittlement)。
此外在高温下,被钢铁吸收的氢原子还可能和钢材中的碳原子形成甲烷气体(CH4),使钢材脱碳变脆,这被称为氢侵蚀(hydrogen attack)。
在使用的历程中,发生氢脆和氢侵蚀的焊接部位很容易开裂。油轮运输的重物和海浪的拍打会加速裂痕的扩张。更恐怖的是,已经发生氢脆的金属外面看起来和通俗金属没有什么差别,不会引起制造和使用者的警醒,这就增添了氢脆的危险性。
氢脆的金属(左)和通俗金属(右)的对比,从外观看不出有什么差异。
氢脆的征象最早是在1875年由 W. H. Johnson 发现的。不外,在自由轮大量出事前,人人还不知道氢有这么强的损坏力。在把裂开的自由轮归因于氢脆后,欧文开创了断裂力学和质料强度的学科分支,建筑业和制造业也终于最先重视这种邪门的元素了。
需要指出的是,直到现在,研究者还没有完全搞清楚氢脆的原理,也无法展望质料在何时那边会泛起氢脆,因此最好的方式照样预防。
适才说到,电焊尤其容易释放氢原子,这是由于电弧和焊条外面的纤维素涂层或空气中的水蒸汽接触,会发生单原子氢。现在泛起了一种叫做低氢焊条的质料,它可以削减单氢原子的发生,适用于焊接高强度的钢材。
固然,有时氢是在制造历程中扩散到金属里的。电镀和洗濯的历程也可能会发生单原子氢,这些单原子氢就有可能污染金属。
好比,为了防侵蚀,一些螺栓常会做一层镀镉。在镀镉的时刻就有可能发生单原子氢。由于镀镉的问题,美国空军设立了低氢脆性镀镉的尺度,要求承包商遵照执行。为了去除氢,螺栓的供应商通常在镀镉后对螺栓举行烘焙(如在24摄氏度的环境中烤数小时),让氢气从螺栓中逸出。
镀镉可以防侵蚀 图片泉源:milinc
在氢的真面目被揭发后,现在氢脆引发的大灾难对照少见,但也并未彻底消逝。
2014~2015年间,伦敦金融区的利德贺大楼的好几个螺栓由于氢脆坏掉了。
旧金山-奥克兰海湾大桥 图片泉源:wikipedia
2013年,美国的旧金山-奥克兰海湾大桥为即将到来的通车举行测试。这座大桥是加州历史上最昂贵的公共建筑,也是被吉尼斯世界纪录收录的最宽的桥。
不外,在通车前的测试中工程师发现了问题:卖力把桥面架设在水泥柱上的保险螺栓在测试运行2周后就泛起了裂痕,让旧金山-奥克兰海湾大桥险些酿成美式断桥。
在测试中,96个保险螺栓里30个坏掉了。厥后发现,这就是氢脆引起的。替换螺栓花费了加利福尼亚州运输部2500万美金,是预估的5倍,引发舆论哗然。
发生氢脆的保险螺栓横断面
氢的憎恶性子也成了氢能源普遍使用的最大阻碍之一。
氢气(H2)虽然不能被金属直接吸收,但在某些条件下(如高压),金属外面的氢气分子会拆解成两个单原子氢,然后被金属吸收,引发氢脆。换言之,用金属质料历久储存高压氢气就相当于养了个不定时炸弹。
1988年,法国里昂四周圣丰 (Saint-Fons)的一个3千升的金属氢气罐发生爆炸,周遭500米内的财物都受到波及。这个氢气罐最早在1939年投入使用,厥后的检测解释爆炸就是氢脆引起的。
氢能源汽车丰田Mirai的氢罐 图片泉源:wikipedia
虽然氢气的燃烧产物只有水,但氢带来的这些贫苦使能够平安压缩氢气燃料的商业手艺难产,这就导致氢气运输管网成本居高不下,氢能源汽车也没有成为主流。
真没想到你是这样的氢啊。
本文来自微信民众号:把科学带回家(ID:steamforkids),作者:七君
版权保护: 本文由 原创,转载请保留链接: http://www.allart.com.cn//html/2020/1127/3794.html